Near Infrared and Visible Image Registration Using Whale Optimization Algorithm
Sanjeev Saxena and
Mausumi Pohit
Additional contact information
Sanjeev Saxena: Amity Univesity, Noida, India
Mausumi Pohit: Gautam Buddha University, India
International Journal of Applied Metaheuristic Computing (IJAMC), 2022, vol. 13, issue 1, 1-14
Abstract:
This paper reports the use of a nature-inspired metaheuristic algorithm known as ‘Whale Optimization Algorithm’ (WOA) for multimodal image registration. WOA is based on the hunting behaviour of Humpback whales and provides better exploration and exploitation of the search space with small possibility of trapping in local optima. Though WOA is used in various optimization problems, no detailed study is available for its use in image registration. For this study different sets of NIR and visible images are considered. The registration results are compared with the other state of the art image registration methods. The results show that WOA is a very competitive algorithm for NIR-visible image registration. With the advantages of better exploration of search space and local optima avoidance, the algorithm can be a suitable choice for multimodal image registration.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJAMC.2022010109 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jamc00:v:13:y:2022:i:1:p:1-14
Access Statistics for this article
International Journal of Applied Metaheuristic Computing (IJAMC) is currently edited by Peng-Yeng Yin
More articles in International Journal of Applied Metaheuristic Computing (IJAMC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().