EconPapers    
Economics at your fingertips  
 

An Optimal K-Nearest Neighbor for Weather Prediction Using Whale Optimization Algorithm

Rajalakshmi Shenbaga Moorthy and Pabitha Parameshwaran
Additional contact information
Rajalakshmi Shenbaga Moorthy: St. Joseph's Institute of Technology, Chennai, India
Pabitha Parameshwaran: Madras Institute of Technology, India

International Journal of Applied Metaheuristic Computing (IJAMC), 2022, vol. 13, issue 1, 1-19

Abstract: The weather has a serious impact on the environment as it affects to change day to day life. In recent days, many algorithms were proposed to predict the weather. Although various machine learning algorithms predict the weather, the optimal prediction of weather is not addressed. Optimal Prediction of weather is required as it has a serious impact on human life. Thus this domain invites an optimal system that can forecast weather thereby saving human life. To optimally predict the changes in weather, a metaheuristic algorithm called Whale Optimization Algorithm (WOA) is integrated with machine learning algorithm K- Nearest Neighbor (K-NN). Whale optimization is an algorithm inspired by the social behavior of whales. The proposed WOAK-NN is compared with K-NN. The integration of WOA with K-NN aims to maximize accuracy, F-measure and minimize mean absolute error. Also, the time complexity of WOAK-NN is compared with K-NN and observed that when the dataset is large, WOAK-NN requires minimum time for an optimal prediction.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJAMC.290538 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jamc00:v:13:y:2022:i:1:p:1-19

Access Statistics for this article

International Journal of Applied Metaheuristic Computing (IJAMC) is currently edited by Peng-Yeng Yin

More articles in International Journal of Applied Metaheuristic Computing (IJAMC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jamc00:v:13:y:2022:i:1:p:1-19