EconPapers    
Economics at your fingertips  
 

Multi-Objective Big Data View Materialization Using MOGA

Akshay Kumar and T. V. Vijay Kumar
Additional contact information
Akshay Kumar: Jawaharlal Nehru University, India
T. V. Vijay Kumar: Jawaharlal Nehru University, India

International Journal of Applied Metaheuristic Computing (IJAMC), 2022, vol. 13, issue 1, 1-28

Abstract: The COVID 19 Pandemic, has resulted in large scale of generation of Big data. This Big data is heterogeneous and includes the data of people infected with corona virus, the people who were in contact of infected person, demographics of infected person, data on corona testing, huge amount of GPS data of people location, and large number of unstructured data about prevention and treatment of COVID 19. Thus, the pandemic has resulted in producing several Zeta bytes of structured, semi-structured and unstructured data. The challenge is to process this Big data, which has the characteristics of very large volume, brisk rate of generation and modification and large data redundancy, in a time bound manner to take timely predictions and decisions. Materialization of views for Big data is one of the ways to enhance the efficiency of processing of the data. In this paper, Big data view selection problem is addressed, as a bi-objective optimization problem, using Multi-objective genetic algorithm.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJAMC.292499 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jamc00:v:13:y:2022:i:1:p:1-28

Access Statistics for this article

International Journal of Applied Metaheuristic Computing (IJAMC) is currently edited by Peng-Yeng Yin

More articles in International Journal of Applied Metaheuristic Computing (IJAMC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jamc00:v:13:y:2022:i:1:p:1-28