On the Utilization of an Ensemble of Meta-Heuristics for Simulating Energy Consumption in Buildings
Eslam Mohammed Abdelkader,
Nehal Elshaboury and
Abobakr Al-Sakkaf
Additional contact information
Eslam Mohammed Abdelkader: Structural Engineering Department, Faculty of Engineering, Cairo University, Egypt
Nehal Elshaboury: Housing and Building National Research Centre, Egypt
Abobakr Al-Sakkaf: Department of Architecture and Environmental Planning, College of Engineering and Petroleum, Yemen
International Journal of Applied Metaheuristic Computing (IJAMC), 2022, vol. 13, issue 1, 1-31
Abstract:
Predicting energy consumption has been a substantial topic because of its ability to lessen energy wastage and establish an acceptable overall operational efficiency. Thus, this research aims at creating a meta-heuristic-based method for autonomous simulation of heating and cooling loads of buildings. The developed method is envisioned on two tiers, whereas the first tier encompasses the use of a set of meta-heuristic algorithms to amplify the exploration and exploitation of Elman neural network through both parametric and structural learning. In this regard, 10 meta-heuristic were utilized, namely differential evolution, particle swarm optimization, invasive weed optimization, teaching-learning optimization, ant colony optimization, grey wolf optimization, grasshopper optimization, moth-flame optimization, antlion optimization, and arithmetic optimization. The second tier is designated for evaluating the meta-heuristic-based models through performance evaluation and statistical comparisons. An integrative ranking of the models is achieved using average ranking algorithm.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJAMC.296262 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jamc00:v:13:y:2022:i:1:p:1-31
Access Statistics for this article
International Journal of Applied Metaheuristic Computing (IJAMC) is currently edited by Peng-Yeng Yin
More articles in International Journal of Applied Metaheuristic Computing (IJAMC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().