A Modified Cuckoo Search Algorithm for Data Clustering
Preeti Pragyan Mohanty and
Subrat Kumar Nayak
Additional contact information
Preeti Pragyan Mohanty: Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar, India
Subrat Kumar Nayak: Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar, India
International Journal of Applied Metaheuristic Computing (IJAMC), 2022, vol. 13, issue 1, 1-32
Abstract:
Clustering of data is one of the necessary data mining techniques, where similar objects are grouped in the same cluster. In recent years, many nature-inspired based clustering techniques have been proposed, which have led to some encouraging results. This paper proposes a Modified Cuckoo Search (MoCS) algorithm. In this proposed work, an attempt has been made to balance the exploration of the Cuckoo Search (CS) algorithm and to increase the potential of the exploration to avoid premature convergence. This algorithm is tested using fifteen benchmark test functions and is proved as an efficient algorithm in comparison to the CS algorithm. Further, this method is compared with well-known nature-inspired algorithms such as Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO), Particle Swarm Optimization with Age Group topology (PSOAG) and CS algorithm for clustering of data using six real datasets. The experimental results indicate that the MoCS algorithm achieves better results as compared to other algorithms in finding optimal cluster centers.
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJAMC.2022010101 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jamc00:v:13:y:2022:i:1:p:1-32
Access Statistics for this article
International Journal of Applied Metaheuristic Computing (IJAMC) is currently edited by Peng-Yeng Yin
More articles in International Journal of Applied Metaheuristic Computing (IJAMC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().