Scalable Differential Evolutionary Clustering Algorithm for Big Data Using Map-Reduce Paradigm
Zakaria Benmounah,
Souham Meshoul and
Mohamed Batouche
Additional contact information
Zakaria Benmounah: Computer Science Department, University of Constantine 2, Constantine, Algeria
Souham Meshoul: Computer Science Department, University of Constantine 2, Constantine, Algeria
Mohamed Batouche: Computer Science Department, University of Constantine 2, Constantine, Algeria
International Journal of Applied Metaheuristic Computing (IJAMC), 2017, vol. 8, issue 1, 45-60
Abstract:
One of the remarkable results of the rapid advances in information technology is the production of tremendous amounts of data sets, so large or complex that available processing methods are inadequate, among these methods cluster analysis. Clustering becomes more challenging and complex. In this paper, the authors describe a highly scalable Differential Evolution (DE) algorithm based on map-reduce programming model. The traditional use of DE to deal with clustering of large sets of data is so time-consuming that it is not feasible. On the other hand, map-reduce is a programming model emerged lately to allow the design of parallel and distributed approaches. In this paper, four stages map-reduce differential evolution algorithm termed as DE-MRC is presented; each of these four phases is a map-reduce process and dedicated to a particular DE operation. DE-MRC has been tested on a real parallel platform of 128 computers connected with each other and more than 30 GB of data. Experimental results show the high scalability and robustness of DE-MRC.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJAMC.2017010103 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jamc00:v:8:y:2017:i:1:p:45-60
Access Statistics for this article
International Journal of Applied Metaheuristic Computing (IJAMC) is currently edited by Peng-Yeng Yin
More articles in International Journal of Applied Metaheuristic Computing (IJAMC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().