EconPapers    
Economics at your fingertips  
 

Regression-Based Automated Facial Image Quality Model

Fatema Tuz Zohra, Andrei D. Gavrilov, Omar A. Zatarain and Marina L. Gavrilova
Additional contact information
Fatema Tuz Zohra: University of Calgary, Calgary, Canada
Andrei D. Gavrilov: University of British Columbia, Calgary, Canada
Omar A. Zatarain: International Institute of Cognitive Informatics and Cognitive Computing (ICIC), Laboratory for Computational Intelligence, Cognitive Systems, Software Science, and Denotational Mathematics, Department of Electrical and Computer Engineering, Schulich School of Engineering and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
Marina L. Gavrilova: Department of Computer Science, University of Calgary, Calgary, Canada

International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 2017, vol. 11, issue 4, 22-40

Abstract: Nowadays, biometric technologies became reliable and widespread means of unobtrusive user authentication in a variety of real-world applications. The performance of an automated face recognition system has a strong relationship with the quality of the biometric samples. The facial samples can be affected by various quality factors, such as uneven illumination, low or high contrast, excessive brightness, blurriness, etc. In this article, the authors propose a quality estimation method based on linear regression analysis to characterize the relationship between different quality factors and the performance of a face recognition system. The regression model can predict the overall quality of a facial sample which reflects the effects of various quality factors on that sample. The weights assigned to the different quality factors by the linear regression model reflect the impact of those quality factors on the performance of the recognition system. Therefore, the prediction scores generated from the model is a strong indicator of the overall quality of the facial images. The authors evaluated the quality estimation model on the Extended Yale Database B. They also performed a study to understand which quality factors affect the face recognition the most.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 18/IJCINI.2017100102 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jcini0:v:11:y:2017:i:4:p:22-40

Access Statistics for this article

International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) is currently edited by Kangshun Li

More articles in International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jcini0:v:11:y:2017:i:4:p:22-40