Moving Target Detection and Tracking Based on Improved FCM Algorithm
Wang Ke Feng and
Sheng Xiao Chun
Additional contact information
Wang Ke Feng: Jiangsu University of Technology, Changzhou, China
Sheng Xiao Chun: Jiangsu University of Technology, Changzhou, China
International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 2020, vol. 14, issue 1, 63-74
Abstract:
With the rapid development of computer intelligence technology, the majority of scholars have a great interest in the detection and tracking of moving targets in the field of video surveillance and have been involved in its research. Moving target detection and tracking has also been widely used in military, industrial control, and intelligent transportation. With the rapid progress of the social economy, the supervision of traffic has become more and more complicated. How to detect the vehicles on the road in real time, monitor the illegal vehicles, and control the illegal vehicles effectively has become a hot issue. In view of the complex situation of moving vehicles in various traffic videos, the authors propose an improved algorithm for effective detection and tracking of moving vehicles, namely improved FCM algorithm. It combines traditional FCM algorithm with genetic algorithm and Kalman filter algorithm to track and detect moving targets. Experiments show that this improved clustering algorithm has certain advantages over other clustering algorithms.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 18/IJCINI.2020010105 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jcini0:v:14:y:2020:i:1:p:63-74
Access Statistics for this article
International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) is currently edited by Kangshun Li
More articles in International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) from IGI Global
Bibliographic data for series maintained by Journal Editor ().