Semrank: A Semantic Similarity-Based Tweets Ranking Approach
Jagrati Singh and
Anil Kumar Singh
Additional contact information
Jagrati Singh: Motilal Nehru National Institute of Technology, Allahabad, India
Anil Kumar Singh: Motilal Nehru National Institute of Technology, Allahabad, India
International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 2021, vol. 15, issue 3, 74-96
Abstract:
Popular real-world events often create huge traffic on Twitter including real-time updates of important moments, personal comments, and so on while the event is happening. Most of the users are interested to read the important tweets that possibly include important moments of that event. However, extracting the relevant tweets of any event is a challenging task due to the endless stream of noisy tweets and vocabulary variation problem of social media content. To handle these challenges, the authors introduce a new approach for computing the relative tweet importance based on the concept of the Pagerank algorithm where adjacency matrix of the graph representation of tweets contains semantic similarity matrix based on the word mover's distance measure utilizing Word2Vec word embedding model. The results show that top-ranked tweets generated by the proposed approach are more concise and news-worthy than baseline approaches.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... /IJCINI.20210701.oa6 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jcini0:v:15:y:2021:i:3:p:74-96
Access Statistics for this article
International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) is currently edited by Kangshun Li
More articles in International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) from IGI Global
Bibliographic data for series maintained by Journal Editor ().