Object-Based Scene Classification Modeled by Hidden Markov Models Architecture
Benrais Lamine and
Baha Nadia
Additional contact information
Benrais Lamine: USTHB, Bab Ezzouar, Algeria
Baha Nadia: USTHB, Bab Ezzouar, Algeria
International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 2021, vol. 15, issue 4, 1-30
Abstract:
Multiclass classification problems such as document classification, medical diagnosis or scene classification are very challenging to address due to similarities between mutual classes. The use of reliable tools is necessary to get good classification results. This paper addresses the scene classification problem using objects as attributes. The process of classification is modeled by a famous mathematical tool: The Hidden Markov Models. We introduce suitable relations that scale the parameters of the Hidden Markov Model into variables of scene classification. The construction of Hidden Markov Chains is supported with weight measures and sorting functions. Lastly, inference algorithms extract most suitable scene categories from the Discrete Markov Chain. A parallelism approach constructs several Discrete Markov Chains in order to improve the accuracy of the classification process. We provide numerous tests on different datasets and compare classification accuracies with some state of the art methods. The proposed approach distinguishes itself by outperforming the other.
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... /IJCINI.20211001.oa6 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jcini0:v:15:y:2021:i:4:p:1-30
Access Statistics for this article
International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) is currently edited by Kangshun Li
More articles in International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) from IGI Global
Bibliographic data for series maintained by Journal Editor ().