Toward Autonomic Computing: Adaptive Neural Network for Trajectory Planning
Amar Ramdane-Cherif
Additional contact information
Amar Ramdane-Cherif: Université de Versailles St-Quentin, France
International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 2007, vol. 1, issue 2, 16-33
Abstract:
Cognitive approach through the neural network “NN” paradigm is a critical discipline that will help bring about autonomic computing “AC.” NN-related research, some involving new ways to apply control theory and control laws, can provide insight into how to run complex systems that optimize to their environments. NN is one kind of AC system that can embody human cog-nitive powers and that can adapt, learn, and take over certain functions previously performed by humans. In recent years, artificial neural networks have received a great deal of attention for their ability to perform nonlinear mappings. In trajectory control of robotic devices, neural networks provide a fast method of autonomously learning the relation between a set of output states and a set of input states. In this article, we apply the cognitive approach to solve position controller problems using an inverse geometrical model. In order to control a robot manipulator in the accomplishment of a task, trajectory planning is required in advance or in real time. The desired trajectory is usually described in Cartesian coordinates and needs to be converted to joint space for the purpose of analyzing and controlling the system behavior. In this article, we use a memory neural network (MNN) to solve the optimization problem concerning the inverse of the direct geometrical model of the redundant manipulator when subject to constraints. Our approach offers substantially better accuracy, avoids the computation of the inverse or pseudo-inverse Jacobian matrix, and does not produce problems such as singularity, redundancy, and considerably increased computational complexity.
Date: 2007
References: Add references at CitEc
Citations:
Downloads: (external link)
https://services.igi-global.com/resolvedoi/resolve ... 018/jcini.2007040102 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jcini0:v:1:y:2007:i:2:p:16-33
Access Statistics for this article
International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) is currently edited by Kangshun Li
More articles in International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) from IGI Global
Bibliographic data for series maintained by Journal Editor ().