A Hybrid Genetic Algorithm based Fuzzy Approach for Abnormal Retinal Image Classification
J. Anitha,
C. Kezi Selva Vijila and
D. Jude Hemanth
Additional contact information
J. Anitha: Karunya University, India
C. Kezi Selva Vijila: Karunya University, India
D. Jude Hemanth: Karunya University, India
International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 2010, vol. 4, issue 3, 29-43
Abstract:
Fuzzy approaches are one of the widely used artificial intelligence techniques in the field of ophthalmology. These techniques are used for classifying the abnormal retinal images into different categories that assist in treatment planning. The main characteristic feature that makes the fuzzy techniques highly popular is their accuracy. But, the accuracy of these fuzzy logic techniques depends on the expertise knowledge, which indirectly relies on the input samples. Insignificant input samples may reduce the accuracy that further reduces the efficiency of the fuzzy technique. In this work, the application of Genetic Algorithm (GA) for optimizing the input samples is explored in the context of abnormal retinal image classification. Abnormal retinal images from four different classes are used in this work and a comprehensive feature set is extracted from these images as classification is performed with the fuzzy classifier and also with the GA optimized fuzzy classifier. Experimental results suggest highly accurate results for the GA based classifier than the conventional fuzzy classifier.
Date: 2010
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/jcini.2010070103 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jcini0:v:4:y:2010:i:3:p:29-43
Access Statistics for this article
International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) is currently edited by Kangshun Li
More articles in International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) from IGI Global
Bibliographic data for series maintained by Journal Editor ().