Robust Feature Vector Set Using Higher Order Autocorrelation Coefficients
Poonam Bansal,
Amita Dev and
Shail Jain
Additional contact information
Poonam Bansal: Guru Gobind Singh Indraprastha University, India
Amita Dev: Ambedkar Institute of Technology, India
Shail Jain: GGSIP University, India
International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 2010, vol. 4, issue 4, 37-46
Abstract:
In this paper, a feature extraction method that is robust to additive background noise is proposed for automatic speech recognition. Since the background noise corrupts the autocorrelation coefficients of the speech signal mostly at the lower orders, while the higher-order autocorrelation coefficients are least affected, this method discards the lower order autocorrelation coefficients and uses only the higher-order autocorrelation coefficients for spectral estimation. The magnitude spectrum of the windowed higher-order autocorrelation sequence is used here as an estimate of the power spectrum of the speech signal. This power spectral estimate is processed further by the Mel filter bank; a log operation and the discrete cosine transform to get the cepstral coefficients. These cepstral coefficients are referred to as the Differentiated Relative Higher Order Autocorrelation Coefficient Sequence Spectrum (DRHOASS). The authors evaluate the speech recognition performance of the DRHOASS features and show that they perform as well as the MFCC features for clean speech and their recognition performance is better than the MFCC features for noisy speech.
Date: 2010
References: Add references at CitEc
Citations:
Downloads: (external link)
https://services.igi-global.com/resolvedoi/resolve ... 18/ijcini.2010100103 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jcini0:v:4:y:2010:i:4:p:37-46
Access Statistics for this article
International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) is currently edited by Kangshun Li
More articles in International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) from IGI Global
Bibliographic data for series maintained by Journal Editor ().