EconPapers    
Economics at your fingertips  
 

Inventory Classification Using Multi-Level Association Rule Mining

Reshu Agarwal and Mandeep Mittal
Additional contact information
Reshu Agarwal: G L Bajaj Institute of Technology and Management, Greater Noida, India
Mandeep Mittal: Department of Mathematics, Amity Institute of Applied Sciences, Amity University, Noida, India

International Journal of Decision Support System Technology (IJDSST), 2019, vol. 11, issue 2, 1-12

Abstract: Popular data mining methods support knowledge discovery from patterns that hold in relations. For many applications, it is difficult to find strong associations among data items at low or primitive levels of abstraction. Mining association rules at multiple levels may lead to more informative and refined knowledge from data. Multi-level association rule mining is a variation of association rule mining for finding relationships between items at each level by applying different thresholds at different levels. In this study, an inventory classification policy is provided. At each level, the loss profit of frequent items is determined. The obtained loss profit is used to rank frequent items at each level with respect to their category, content and brand. This helps inventory manager to determine the most profitable item with respect to their category, content and brand. An example is illustrated to validate the results. Further, to comprehend the impact of above approach in the real scenario, experiments are conducted on the exiting dataset.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 18/IJDSST.2019040101 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jdsst0:v:11:y:2019:i:2:p:1-12

Access Statistics for this article

International Journal of Decision Support System Technology (IJDSST) is currently edited by Shaofeng Liu

More articles in International Journal of Decision Support System Technology (IJDSST) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jdsst0:v:11:y:2019:i:2:p:1-12