EconPapers    
Economics at your fingertips  
 

False Fire Alarm Detection Using Data Mining Techniques

Raheel Zafar, Shah Zaib and Muhammad Asif
Additional contact information
Raheel Zafar: University of Lahore, Pakistan
Shah Zaib: University of Lahore, Pakistan
Muhammad Asif: University of Lahore, Pakistan

International Journal of Decision Support System Technology (IJDSST), 2020, vol. 12, issue 4, 21-35

Abstract: In the era of smart home technology, early warning systems and emergency services are inevitable. To make smart homes safer, early fire alarm systems can play a significant role. Smart homes usually utilize communication, sensors, actuators, and other technologies to provide a safe and smart environment. This research work introduced a model for the fire alarm system and designed a fire alarm detection (FAD) simulator to produce a synthetic dataset. The designed simulator utilizes a variety of sensors (temperature, gas, and humidity) to simulate fire alarm scenarios based on real-world data. The produced data is investigated and analyzed to classify the possible fire behaviors based on key assumptions taken from real-world scenarios. Different classification models are used to determine an optimal classifier for fire detection. The proposed technique can identify the false alarms based on parameters like temperature, smoke, and gas values of different sensors embedded in a fire alarm detection simulator.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 18/IJDSST.2020100102 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jdsst0:v:12:y:2020:i:4:p:21-35

Access Statistics for this article

International Journal of Decision Support System Technology (IJDSST) is currently edited by Shaofeng Liu

More articles in International Journal of Decision Support System Technology (IJDSST) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jdsst0:v:12:y:2020:i:4:p:21-35