Efficient Implementation of Hadoop MapReduce based Business Process Dataflow
Ishak H.A. Meddah,
Khaled Belkadi and
Mohamed Amine Boudia
Additional contact information
Ishak H.A. Meddah: Université USTO, Saida, Algeria
Khaled Belkadi: LAMOSI Laboratory, Mathematics and Computer Science Faculty, USTO-MB University, Oran, Algeria
Mohamed Amine Boudia: Dr. Moulay Tahar University of Saida, Saida, Algeria
International Journal of Decision Support System Technology (IJDSST), 2017, vol. 9, issue 1, 49-60
Abstract:
Hadoop MapReduce is one of the solutions for the process of large and big data, with-it the authors can analyze and process data, it does this by distributing the computational in a large set of machines. Process mining provides an important bridge between data mining and business process analysis, his techniques allow for mining data information from event logs. Firstly, the work consists to mine small patterns from a log traces, those patterns are the workflow of the execution traces of business process. The authors' work is an amelioration of the existing techniques who mine only one general workflow, the workflow present the general traces of two web applications; they use existing techniques; the patterns are represented by finite state automaton; the final model is the combination of only two types of patterns whom are represented by the regular expressions. Secondly, the authors compute these patterns in parallel, and then combine those patterns using MapReduce, they have two parts the first is the Map Step, they mine patterns from execution traces and the second is the combination of these small patterns as reduce step. The results are promising; they show that the approach is scalable, general and precise. It reduces the execution time by the use of Hadoop MapReduce Framework.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 18/IJDSST.2017010104 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jdsst0:v:9:y:2017:i:1:p:49-60
Access Statistics for this article
International Journal of Decision Support System Technology (IJDSST) is currently edited by Shaofeng Liu
More articles in International Journal of Decision Support System Technology (IJDSST) from IGI Global
Bibliographic data for series maintained by Journal Editor ().