Finding the Semantic Relationship Between Wikipedia Articles Based on a Useful Entry Relationship
Lin-Chih Chen
Additional contact information
Lin-Chih Chen: Department of Information Management, National Dong Hwa University, Hualien, Taiwan
International Journal of Data Warehousing and Mining (IJDWM), 2017, vol. 13, issue 4, 33-52
Abstract:
Wikipedia is the largest online Internet encyclopedia, and everyone can create and edit different articles. On the one hand, because it contains huge amounts of articles and there are many different language versions, it often faces synonymous and polysemy problems. On the other hand, since some of the similar Wikipedia articles may have the same topic of discussion, it needs a suitable way to identify effectively the semantic relationships between articles. This paper first uses three well-known semantic analysis models LSA, PLSA, and LDA as evaluation benchmarks. Then, it uses the entry relationship between Wikipedia articles to design its model. According to the experimental results and analysis, its model has high performance and low cost characteristics compared with other models. The advantages of its model are as follows: (1) it is a good model for finding the semantic relationships between Wikipedia articles; (2) it is suitable for dealing with huge amounts of documentation.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJDWM.2017100103 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jdwm00:v:13:y:2017:i:4:p:33-52
Access Statistics for this article
International Journal of Data Warehousing and Mining (IJDWM) is currently edited by Eric Pardede
More articles in International Journal of Data Warehousing and Mining (IJDWM) from IGI Global
Bibliographic data for series maintained by Journal Editor ().