Sarcasm Detection Using RNN with Relation Vector
Satoshi Hiai and
Kazutaka Shimada
Additional contact information
Satoshi Hiai: Kyushu Institute of Technology, Iizuka, Japan
Kazutaka Shimada: Kyushu Institute of Technology, Iizuka, Japan
International Journal of Data Warehousing and Mining (IJDWM), 2019, vol. 15, issue 4, 66-78
Abstract:
Sarcasm detection has been treated as a task that classifies text as sarcastic or non-sarcastic. Sarcasm detection is a significant challenge for sentiment analysis because sarcasm involves a positive expression with a negative meaning. Surface information in text is commonly used as a classification feature. However, the authors must consider both surface and non-surface features. In this article, the authors focus on relation information between pairs of role expressions, such as “boss and staff,” and propose a sarcasm detection method based on surface and relation information. First, the authors extract role pairs from a corpus. Then, the authors construct a relation vector generated from these role pairs and incorporate the relation vector into a recurrent neural network model. The authors evaluated the proposed method by comparing it to previously proposed methods. The results demonstrate the effectiveness of introducing the relation vector to sarcasm detection.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJDWM.2019100104 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jdwm00:v:15:y:2019:i:4:p:66-78
Access Statistics for this article
International Journal of Data Warehousing and Mining (IJDWM) is currently edited by Eric Pardede
More articles in International Journal of Data Warehousing and Mining (IJDWM) from IGI Global
Bibliographic data for series maintained by Journal Editor ().