EconPapers    
Economics at your fingertips  
 

A Novel Method for Classifying Function of Spatial Regions Based on Two Sets of Characteristics Indicated by Trajectories

Haitao Zhang, Chenguang Yu and Yan Jin
Additional contact information
Haitao Zhang: Nanjing University of Posts and Telecommunications, China
Chenguang Yu: Nanjing University of Posts and Telecommunications, China
Yan Jin: Nanjing University of Posts and Telecommunications, China

International Journal of Data Warehousing and Mining (IJDWM), 2020, vol. 16, issue 3, 1-19

Abstract: Trajectory is a significant factor for classifying functions of spatial regions. Many spatial classification methods use trajectories to detect buildings and districts in urban settings. However, methods that only take into consideration the local spatiotemporal characteristics indicated by trajectories may generate inaccurate results. In this article, a novel method for classifying function of spatial regions based on two sets of characteristics indicated by trajectories is proposed, in which the local spatiotemporal characteristics as well as the global connection characteristics are obtained through two sets of calculations. The method was evaluated in two experiments: one that measured changes in the classification metric through a splits ratio factor, and one that compared the classification performance between the proposed method and methods based on a single set of characteristics. The results showed that the proposed method is more accurate than the two traditional methods, with a precision value of 0.93, a recall value of 0.77, and an F-Measure value of 0.84.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJDWM.2020070101 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jdwm00:v:16:y:2020:i:3:p:1-19

Access Statistics for this article

International Journal of Data Warehousing and Mining (IJDWM) is currently edited by Eric Pardede

More articles in International Journal of Data Warehousing and Mining (IJDWM) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jdwm00:v:16:y:2020:i:3:p:1-19