EconPapers    
Economics at your fingertips  
 

A Unified Multi-View Clustering Method Based on Non-Negative Matrix Factorization for Cancer Subtyping

Zhanpeng Huang, Jiekang Wu, Jinlin Wang, Yu Lin and Xiaohua Chen
Additional contact information
Zhanpeng Huang: Guangdong University of Technology, China
Jiekang Wu: School of Automation, Guangdong University of Technology, China
Jinlin Wang: Guangzhou Medical University, China
Yu Lin: Southern Medical University, China
Xiaohua Chen: Southern Medical University, China

International Journal of Data Warehousing and Mining (IJDWM), 2023, vol. 19, issue 1, 1-19

Abstract: Non-negative matrix factorization (NMF) has gained sustaining attention due to its compact leaning ability. Cancer subtyping is important for cancer prognosis analysis and clinical precision treatment. Integrating multi-omics data for cancer subtyping is beneficial to uncover the characteristics of cancer at the system-level. A unified multi-view clustering method was developed via adaptive graph and sparsity regularized non-negative matrix factorization (multi-GSNMF) for cancer subtyping. The local geometrical structures of each omics data were incorporated into the procedures of common consensus matrix learning, and the sparsity constraints were used to reduce the effect of noise and outliers in bioinformatics datasets. The performances of multi-GSNMF were evaluated on ten cancer datasets. Compared with 10 state-of-the-art multi-view clustering algorithms, multi-GSNMF performed better by providing significantly different survival in 7 out of 10 cancer datasets, the highest among all the compared methods.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJDWM.319956 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jdwm00:v:19:y:2023:i:1:p:1-19

Access Statistics for this article

International Journal of Data Warehousing and Mining (IJDWM) is currently edited by Eric Pardede

More articles in International Journal of Data Warehousing and Mining (IJDWM) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jdwm00:v:19:y:2023:i:1:p:1-19