Medical Document Clustering Using Ontology-Based Term Similarity Measures
Xiaodan Zhang,
Liping Jing,
Xiaohua Hu,
Michael Ng,
Jiali Xia Jiangxi and
Xiaohua Zhou
Additional contact information
Liping Jing: The University of Hong Kong, China
Xiaohua Hu: Drexel University, USA
Michael Ng: Hong Kong Baptist University, China
Jiali Xia Jiangxi: University of Finance and Economics, China
Xiaohua Zhou: Drexel University, USA
International Journal of Data Warehousing and Mining (IJDWM), 2008, vol. 4, issue 1, 62-73
Abstract:
Recent research shows that ontology as background knowledge can improve document clustering quality with its concept hierarchy knowledge. Previous studies take term semantic similarity as an important measure to incorporate domain knowledge into clustering process such as clustering initialization and term re-weighting. However, not many studies have been focused on how different types of term similarity measures affect the clustering performance for a certain domain. In this article, we conduct a comparative study on how different term semantic similarity measures including path-based, information-content-based and feature-based similarity measure affect document clustering. Term re-weighting of document vector is an important method to integrate domain ontology to clustering process. In detail, the weight of a term is augmented by the weights of its cooccurred concepts. Spherical k-means are used for evaluate document vector re-weighting on two real-world datasets: Disease10 and OHSUMED23. Experimental results on nine different semantic measures have shown that: (1) there is no certain type of similarity measures that significantly outperforms the others; (2) Several similarity measures have rather more stable performance than the others; (3) term re-weighting has positive effects on medical document clustering, but might not be significant when documents are short of terms.
Date: 2008
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 4018/jdwm.2008010104 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jdwm00:v:4:y:2008:i:1:p:62-73
Access Statistics for this article
International Journal of Data Warehousing and Mining (IJDWM) is currently edited by Eric Pardede
More articles in International Journal of Data Warehousing and Mining (IJDWM) from IGI Global
Bibliographic data for series maintained by Journal Editor ().