EconPapers    
Economics at your fingertips  
 

Classification of Peer-to-Peer Traffic Using A Two-Stage Window-Based Classifier With Fast Decision Tree and IP Layer Attributes

Bijan Raahemi and Ali Mumtaz
Additional contact information
Bijan Raahemi: University of Ottawa, Canada
Ali Mumtaz: University of Ottawa, Canada

International Journal of Data Warehousing and Mining (IJDWM), 2010, vol. 6, issue 3, 28-42

Abstract: This paper presents a new approach using data mining techniques, and in particular a two-stage architecture, for classification of Peer-to-Peer (P2P) traffic in IP networks where in the first stage the traffic is filtered using standard port numbers and layer 4 port matching to label well-known P2P and NonP2P traffic. The labeled traffic produced in the first stage is used to train a Fast Decision Tree (FDT) classifier with high accuracy. The Unknown traffic is then applied to the FDT model which classifies the traffic into P2P and NonP2P with high accuracy. The two-stage architecture not only classifies well-known P2P applications, but also classifies applications that use random or non-standard port numbers and cannot be classified otherwise. The authors captured the internet traffic at a gateway router, performed pre-processing on the data, selected the most significant attributes, and prepared a training data set to which the new algorithm was applied. Finally, the authors built several models using a combination of various attribute sets for different ratios of P2P to NonP2P traffic in the training data.

Date: 2010
References: Add references at CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 4018/jdwm.2010070103 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jdwm00:v:6:y:2010:i:3:p:28-42

Access Statistics for this article

International Journal of Data Warehousing and Mining (IJDWM) is currently edited by Eric Pardede

More articles in International Journal of Data Warehousing and Mining (IJDWM) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jdwm00:v:6:y:2010:i:3:p:28-42