A Clustering Rule Based Approach for Classification Problems
Philicity K. Williams,
Caio V. Soares and
Juan E. Gilbert
Additional contact information
Philicity K. Williams: Auburn University, USA
Caio V. Soares: Auburn University and Robert Bosch LLC, USA
Juan E. Gilbert: Clemson University, USA
International Journal of Data Warehousing and Mining (IJDWM), 2012, vol. 8, issue 1, 1-23
Abstract:
Predictive models, such as rule based classifiers, often have difficulty with incomplete data (e.g., erroneous/missing values). So, this work presents a technique used to reduce the severity of the effects of missing data on the performance of rule base classifiers using divisive data clustering. The Clustering Rule based Approach (CRA) clusters the original training data and builds a separate rule based model on the cluster wise data. The individual models are combined into a larger model and evaluated against test data. The effects of the missing attribute information for ordered and unordered rule sets is evaluated and the collective model (CRA) is experimentally used to show that its performance is less affected than the traditional model when the test data has missing attribute values, thus making it more resilient and robust to missing data.
Date: 2012
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 4018/jdwm.2012010101 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jdwm00:v:8:y:2012:i:1:p:1-23
Access Statistics for this article
International Journal of Data Warehousing and Mining (IJDWM) is currently edited by Eric Pardede
More articles in International Journal of Data Warehousing and Mining (IJDWM) from IGI Global
Bibliographic data for series maintained by Journal Editor ().