An Efficient Hybrid Artificial Bee Colony Algorithm for Customer Segmentation in Mobile E-commerce
Xiaoyi Deng
Additional contact information
Xiaoyi Deng: College of Business Administration, Huaqiao University, Xiamen, China
Journal of Electronic Commerce in Organizations (JECO), 2013, vol. 11, issue 2, 53-63
Abstract:
Customer segmentation can enable company administrators to establish good customer relations and refine their marketing strategies to match customer expectations. To achieve optimal segmentation, a hybrid Artificial Bee Colony algorithm (ABC) is proposed to classify customers in mobile e-commerce environment, which is named KP-ABC. KP-ABC is based on three famous algorithms: the K-means, Particle Swarm Optimization (PSO), and ABC. The author first applied five clustering algorithms to a mobile customer segmentation problem using data collected from a well established chain restaurant which has operations throughout Japan. The results from the clustering were compared to the existing company customer segmentation data for verifications. Based on the initial analysis, special characteristics from those three algorithms were extracted and modified in our KP-ABC method which performed extremely well with mobile e-commerce applications. The result shows that KP-ABC is at least 2% higher than that of other three algorithms.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 4018/jeco.2013040105 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jeco00:v:11:y:2013:i:2:p:53-63
Access Statistics for this article
Journal of Electronic Commerce in Organizations (JECO) is currently edited by Pedro Isaías
More articles in Journal of Electronic Commerce in Organizations (JECO) from IGI Global
Bibliographic data for series maintained by Journal Editor ().