Artificial Bee Colony Optimized Deep Neural Network Model for Handling Imbalanced Stroke Data: ABC-DNN for Prediction of Stroke
Ajay Dev and
Sanjay Kumar Malik
Additional contact information
Ajay Dev: SRM University, India
Sanjay Kumar Malik: SRM University, India
International Journal of E-Health and Medical Communications (IJEHMC), 2021, vol. 12, issue 5, 67-83
Abstract:
The healthcare domain gets wide attention among the research community due to incremental data growth, advanced diagnostic tools, medical imaging processes, and many more. Enormous healthcare data is generated through diagnostic tool and medical imaging process, but handling of these data is a tough task due to its nature. A large number of machine learning techniques are presented for handling the healthcare data and right diagnosis of disease. However, the accuracy is one of primary concerns regarding the disease diagnosis. Hence, this study explores the applicability of deep neural network (DNN) technique for handling the imbalance of healthcare data. An artificial bee colony technique is adopted to determine the relevant features of stroke disease called ABC-FS-optimized DNN. The performance of proposed ABC-FS-optimized DNN model is evaluated using accuracy, precision, and recall parameters and compared with state of art existing techniques. The simulation results showed that proposed model obtains 87.09%, 84.28%, and 85.72% accuracy, precision, and recall rates, respectively.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... /IJEHMC.20210901.oa5 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jehmc0:v:12:y:2021:i:5:p:67-83
Access Statistics for this article
International Journal of E-Health and Medical Communications (IJEHMC) is currently edited by Joel J.P.C. Rodrigues
More articles in International Journal of E-Health and Medical Communications (IJEHMC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().