Classifier Selection for the Prediction of Dominant Transmission Mode of Coronavirus Within Localities: Predicting COVID-19 Transmission Mode
Donald Douglas Atsa'am and
Ruth Wario
Additional contact information
Donald Douglas Atsa'am: University of the Free State, South Africa
Ruth Wario: University of the Free State, South Africa
International Journal of E-Health and Medical Communications (IJEHMC), 2021, vol. 12, issue 6, 1-12
Abstract:
The coronavirus disease-2019 (COVID-19) pandemic is an ongoing concern that requires research in all disciplines to tame its spread. Nine classification algorithms were selected for evaluating the most appropriate in predicting the prevalent COVID-19 transmission mode in a geographic area. These include; multinomial logistic regression, k-nearest neighbour, support vector machines, linear discriminant analysis, naïve Bayes, C5.0, bagged classification and regression trees, random forest, and stochastic gradient boosting. Five COVID-19 datasets were employed for classification. Predictive accuracy was determined using 10-fold cross validation with three repeats. The Friedman’s test was conducted and the outcome showed the performance of each algorithm is significantly different. The stochastic gradient boosting yielded the highest predictive accuracy, 81%. This finding should be valuable to health informaticians, health analysts and others regarding which machine learning tool to adopt in the efforts to detect dominant transmission mode of the virus within localities.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... /IJEHMC.20211101.oa1 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jehmc0:v:12:y:2021:i:6:p:1-12
Access Statistics for this article
International Journal of E-Health and Medical Communications (IJEHMC) is currently edited by Joel J.P.C. Rodrigues
More articles in International Journal of E-Health and Medical Communications (IJEHMC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().