EconPapers    
Economics at your fingertips  
 

Kernelised Rough Sets Based Clustering Algorithms Fused With Firefly Algorithm for Image Segmentation

Srujan Sai Chinta
Additional contact information
Srujan Sai Chinta: Vellore Institute of Technology, Vellore, India

International Journal of Fuzzy System Applications (IJFSA), 2019, vol. 8, issue 4, 25-38

Abstract: Data clustering methods have been used extensively for image segmentation in the past decade. In one of the author's previous works, this paper has established that combining the traditional clustering algorithms with a meta-heuristic like the Firefly Algorithm improves the stability of the output as well as the speed of convergence. It is well known now that the Euclidean distance as a measure of similarity has certain drawbacks and so in this paper we replace it with kernel functions for the study. In fact, the authors combined Rough Fuzzy C-Means (RFCM) and Rough Intuitionistic Fuzzy C-Means (RIFCM) with Firefly algorithm and replaced Euclidean distance with either Gaussian or Hyper-tangent or Radial basis Kernels. This paper terms these algorithms as Gaussian Kernel based rough Fuzzy C-Means with Firefly Algorithm (GKRFCMFA), Hyper-tangent Kernel based rough Fuzzy C-Means with Firefly Algorithm (HKRFCMFA), Gaussian Kernel based rough Intuitionistic Fuzzy C-Means with Firefly Algorithm (GKRIFCMFA) and Hyper-tangent Kernel based rough Intuitionistic Fuzzy C-Means with Firefly Algorithm (HKRIFCMFA), Radial Basis Kernel based rough Fuzzy C-Means with Firefly Algorithm (RBKRFCMFA) and Radial Basis Kernel based rough Intuitionistic Fuzzy C-Means with Firefly Algorithm (RBKRIFCMFA). In order to establish that these algorithms perform better than the corresponding Euclidean distance-based algorithms, this paper uses measures such as DB and Dunn indices. The input data comprises of three different types of images. Also, this experimentation varies over different number of clusters.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJFSA.2019100102 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jfsa00:v:8:y:2019:i:4:p:25-38

Access Statistics for this article

International Journal of Fuzzy System Applications (IJFSA) is currently edited by Deng-Feng Li

More articles in International Journal of Fuzzy System Applications (IJFSA) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jfsa00:v:8:y:2019:i:4:p:25-38