EconPapers    
Economics at your fingertips  
 

Self Adaptive Particle Swarm Optimization for Efficient Virtual Machine Provisioning in Cloud

R. Jeyarani, N. Nagaveni and R. Vasanth Ram
Additional contact information
R. Jeyarani: Coimbatore Institute of Technology, India
N. Nagaveni: Coimbatore Institute of Technology, India
R. Vasanth Ram: PSG College of Technology, India

International Journal of Intelligent Information Technologies (IJIIT), 2011, vol. 7, issue 2, 25-44

Abstract: Cloud Computing provides dynamic leasing of server capabilities as a scalable, virtualized service to end users. The discussed work focuses on Infrastructure as a Service (IaaS) model where custom Virtual Machines (VM) are launched in appropriate servers available in a data-center. The context of the environment is a large scale, heterogeneous and dynamic resource pool. Nonlinear variation in the availability of processing elements, memory size, storage capacity, and bandwidth causes resource dynamics apart from the sporadic nature of workload. The major challenge is to map a set of VM instances onto a set of servers from a dynamic resource pool so the total incremental power drawn upon the mapping is minimal and does not compromise the performance objectives. This paper proposes a novel Self Adaptive Particle Swarm Optimization (SAPSO) algorithm to solve the intractable nature of the above challenge. The proposed approach promptly detects and efficiently tracks the changing optimum that represents target servers for VM placement. The experimental results of SAPSO was compared with Multi-Strategy Ensemble Particle Swarm Optimization (MEPSO) and the results show that SAPSO outperforms the latter for power aware adaptive VM provisioning in a large scale, heterogeneous and dynamic cloud environment.

Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 4018/jiit.2011040102 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jiit00:v:7:y:2011:i:2:p:25-44

Access Statistics for this article

International Journal of Intelligent Information Technologies (IJIIT) is currently edited by Vijayan Sugumaran

More articles in International Journal of Intelligent Information Technologies (IJIIT) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jiit00:v:7:y:2011:i:2:p:25-44