EconPapers    
Economics at your fingertips  
 

Ranking with Genetics: Improving Document Ranking With Genetic and Optimization Algorithms

Lawrence Master
Additional contact information
Lawrence Master: Dakota State University, Madison, USA

International Journal of Information Retrieval Research (IJIRR), 2020, vol. 10, issue 3, 20-34

Abstract: There are many applications for ranking, including page searching, question answering, recommender systems, sentiment analysis, and collaborative filtering, to name a few. In the past several years, machine learning and information retrieval techniques have been used to develop ranking algorithms and several list wise approaches to learning to rank have been developed. We propose a new method, which we call GeneticListMLE++ and GeneticListNet++, which build on the original ListMLE and ListNet algorithms. Our method substantially improves on the original ListMLE and ListNet ranking approaches by incorporating genetic optimization of hyperparameters, a nonlinear neural network ranking model, and a regularization technique.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJIRR.2020070102 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jirr00:v:10:y:2020:i:3:p:20-34

Access Statistics for this article

International Journal of Information Retrieval Research (IJIRR) is currently edited by Zhongyu Lu

More articles in International Journal of Information Retrieval Research (IJIRR) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jirr00:v:10:y:2020:i:3:p:20-34