Analysis of Regular Patterns in Un-Weighted Directed Graphs
Anand Gupta,
Hardeo Kumar Thakur,
Anmoll Kumar Jain and
Prakhar Rustagi
Additional contact information
Anand Gupta: Netaji Subhas University of Technology, India
Hardeo Kumar Thakur: Netaji Subhas University of Technology, India
Anmoll Kumar Jain: Netaji Subhas University of Technology, India
Prakhar Rustagi: Netaji Subhas University of Technology, India
International Journal of Information Retrieval Research (IJIRR), 2022, vol. 12, issue 1, 1-16
Abstract:
Time evolving networks tend to have an element of regularity. This regularity is characterized by existence of repetitive patterns in the data sequences of the graph metrics. As per our research, the relevance of such regular patterns to the network has not been adequately explored. Such patterns in certain data sequences are indicative of properties like popularity, activeness etc. which are of vital significance for any network. These properties are closely indicated by data sequences of graph metrics - degree prestige, degree centrality and occurrence. In this paper, (a) an improved mining algorithm has been used to extract regular patterns in these sequences, and (b) a methodology has been proposed to quantitatively analyse the behavior of the obtained patterns. To analyze this behavior, a quantification measure coined as "Sumscore" has been defined to compare the relative significance of such patterns. The patterns are ranked according to their Sumscores and insights are then drawn upon it. The efficacy of this method is demonstrated by experiments on two real world datasets.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJIRR.289571 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jirr00:v:12:y:2022:i:1:p:1-16
Access Statistics for this article
International Journal of Information Retrieval Research (IJIRR) is currently edited by Zhongyu Lu
More articles in International Journal of Information Retrieval Research (IJIRR) from IGI Global
Bibliographic data for series maintained by Journal Editor ().