Breast Cancer Histopathological Image Classification Using Stochastic Dilated Residual Ghost Model
Ramgopal Kashyap
Additional contact information
Ramgopal Kashyap: Amity School of Engineering and Technology, Amity University, Raipur, India
International Journal of Information Retrieval Research (IJIRR), 2022, vol. 12, issue 1, 1-24
Abstract:
A new deep learning-based classification model called the Stochastic Dilated Residual Ghost (SDRG) was proposed in this work for categorizing histopathology images of breast cancer. The SDRG model used the proposed Multiscale Stochastic Dilated Convolution (MSDC) model, a ghost unit, stochastic upsampling, and downsampling units to categorize breast cancer accurately. This study addresses four primary issues: first, strain normalization was used to manage color divergence, data augmentation with several factors was used to handle the overfitting. The second challenge is extracting and enhancing tiny and low-level information such as edge, contour, and color accuracy; it is done by the proposed multiscale stochastic and dilation unit. The third contribution is to remove redundant or similar information from the convolution neural network using a ghost unit. According to the assessment findings, the SDRG model scored overall 95.65 percent accuracy rates in categorizing images with a precision of 99.17 percent, superior to state-of-the-art approaches.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJIRR.289655 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jirr00:v:12:y:2022:i:1:p:1-24
Access Statistics for this article
International Journal of Information Retrieval Research (IJIRR) is currently edited by Zhongyu Lu
More articles in International Journal of Information Retrieval Research (IJIRR) from IGI Global
Bibliographic data for series maintained by Journal Editor ().