A Highest Sense Count Based Method for Disambiguation of Web Queries for Hindi Language Web Information Retrieval
Sanjay K. Dwivedi
Additional contact information
Sanjay K. Dwivedi: Department of Computer Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
International Journal of Information Retrieval Research (IJIRR), 2012, vol. 2, issue 4, 1-11
Abstract:
The ambiguity in word senses has been recognized as a major challenge for the information retrieval systems. Hindi language web information retrieval, like other languages, faces the problem of sense ambiguity. The sense ambiguity problem deteriorates the performance of every natural language processing (NLP) application. The performance of Hindi language web information retrieval is also affected by it. In this paper, the author formalized an approach for the disambiguation of the senses to improve the performance of Hindi web information retrieval. Our system works in such a way that ambiguity detection has been performed before disambiguation of web queries. Test samples of 100 queries have been selected. When these queries were subjected to ambiguity detection, we found that 43% of them have been detected unambiguous. After ambiguity detection, the disambiguation approach is followed which is based on HSC (Highest Sense Count). Query disambiguation approach further follows query expansion. The expanded query generates the new result set which results into high precision and high similarity score. The 57 expanded queries are tested against 1000 test document instances. The overall improvement is 45% in the average precision, 23% in interpolated average precision and a significant improvement in the average similarity score of the new generated result set. The overall accuracy of our approach has been 61.4% and it improves the performance of the system by 45%.
Date: 2012
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/ijirr.2012100101 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jirr00:v:2:y:2012:i:4:p:1-11
Access Statistics for this article
International Journal of Information Retrieval Research (IJIRR) is currently edited by Zhongyu Lu
More articles in International Journal of Information Retrieval Research (IJIRR) from IGI Global
Bibliographic data for series maintained by Journal Editor ().