Semantic Text Summarization Based on Syntactic Patterns
Mohamed H. Haggag
Additional contact information
Mohamed H. Haggag: Department of Computer Science, Faculty of Computers & Information, Helwan University, Cairo, Egypt
International Journal of Information Retrieval Research (IJIRR), 2013, vol. 3, issue 4, 18-34
Abstract:
Text summarization is machine based generation of a shortened version of a text. The summary should be a non-redundant extract from the original text. Most researches of text summarization use sentence extraction instead of abstraction to produce a summary. Extraction is depending mainly on sentences that already contained in the original input, which makes it more accurate and more concise. When all input articles are surrounding a particular event, extracting similar sentences would result in producing a highly repetitive summary. In this paper, a novel model for text summarization is proposed based on removing the non-effective sentences in producing an extract from the text. The model utilizes semantic analysis by evaluating sentences similarity. This similarity is provided by evaluating individual words similarity as well as syntactic relationships between neighboring words. These relationships addressed throughout the model as syntactic patterns. Word senses and the correlating part of speech for the word within context are provided in the semantic processing of matched patterns. The introduction of syntactic patterns knowledge supports text reduction by mapping the matched patterns into summarized ones. In addition, syntactic patterns make use of sentence relatedness evaluation in defining which sentences to keep and which to drop. Experiments proved that the model presented throughout the paper is well performing in results evaluation of compression rate, accuracy, recall and other human criteria like correctness, novelty, fluency and usefulness.
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/ijirr.2013100102 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jirr00:v:3:y:2013:i:4:p:18-34
Access Statistics for this article
International Journal of Information Retrieval Research (IJIRR) is currently edited by Zhongyu Lu
More articles in International Journal of Information Retrieval Research (IJIRR) from IGI Global
Bibliographic data for series maintained by Journal Editor ().