Analysis of Low-Carbon, Energy-Saving, and Emission Reduction Models Based on Rail Transit
Jiaqi Sun and
Le Van Vang
Additional contact information
Jiaqi Sun: University of Queensland, Australia
Le Van Vang: Ho Chi Minh City University of Transport, Vietnam
International Journal of Information System Modeling and Design (IJISMD), 2024, vol. 15, issue 1, 1-13
Abstract:
It is difficult to define scientific applicability conditions when dealing with different evaluation objects and scope. This article is based on multi-source big data such as the Automatic Fare Collection System (AFC) of urban rail transit, comprehensively considering the multidimensional impact of urban rail transit on the urban transportation system, and conducting a quantitative analysis of the energy-saving and emission reduction effects of urban rail transit. This study adopts a traffic emission model based on specific driving forces and a traffic demand prediction model, coupling the model and data to establish an urban rail transit energy conservation and emission reduction evaluation model suitable for different urban rail transit setting scenarios. Finally, this study selected six districts in Beijing as model application cases and used a combination of RP (display preference) survey and SP (state preference) survey to complete model parameter calibration for application cases.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJISMD.355708 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jismd0:v:15:y:2024:i:1:p:1-13
Access Statistics for this article
International Journal of Information System Modeling and Design (IJISMD) is currently edited by Thierry O. C. Edoh
More articles in International Journal of Information System Modeling and Design (IJISMD) from IGI Global
Bibliographic data for series maintained by Journal Editor ().