EconPapers    
Economics at your fingertips  
 

Graph Database to Enhance Supply Chain Resilience for Industry 4.0

Young-Chae Hong and Jing Chen
Additional contact information
Young-Chae Hong: Ford Motor Company, USA
Jing Chen: Ford Motor Company, USA

International Journal of Information Systems and Supply Chain Management (IJISSCM), 2022, vol. 15, issue 1, 1-19

Abstract: Supply chain network in the automotive industry has complex, interconnected, multiple-depth relationships. Recently, the volume of supply chain data increases significantly with Industry 4.0. The complex relationships and massive volume of supply chain data can cause visibility and scalability issues in big data analysis and result in less responsive and fragile inventory management. The authors develop a graph data modeling framework to address the computational problem of big supply chain data analysis. In addition, this paper introduces Time-to-Stockout analysis for supply chain resilience and shows how to compute it through a labeled property graph model. The computational result shows that the proposed graph data model is efficient for recursive and variable-length data in supply chain, and relationship-centric graph query language has capable of handling a wide range of business questions with impressive query time.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 8/IJISSCM.2022010104 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jisscm:v:15:y:2022:i:1:p:1-19

Access Statistics for this article

International Journal of Information Systems and Supply Chain Management (IJISSCM) is currently edited by John Wang

More articles in International Journal of Information Systems and Supply Chain Management (IJISSCM) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jisscm:v:15:y:2022:i:1:p:1-19