Comprehensive Composition to Spot Intrusions by Optimized Gaussian Kernel SVM
Kapil Kumar
Additional contact information
Kapil Kumar: NSUT East Campus, India
International Journal of Knowledge-Based Organizations (IJKBO), 2022, vol. 12, issue 1, 1-27
Abstract:
The intrusion interjects network devices and holds a switch of the network with the command which regulates the programmer and programmer govern the nasty code inoculated in the device for attaining intelligence about the devices. In this paper, the researchers organized the IDS framework by using machine learning algorithms like Linear SVM, RBF SVM, Sigmoid SVM, and Polynomial SVM to detect intrusions and estimate the performance of numerous algorithms for attaining the optimized algorithm. The researchers utilized the KDDCUP99 for equating the accuracy, precision, and recall of the algorithms, and for classifications, the researchers utilized the binary encoder tools. The performance analysis calculates that RBF SVM is the finest classifier amongst the other SVMs, and the prediction report predicts that Linear SVM results with 99.2% accuracy, Sigmoid SVM results with 99.7% accuracy, Polynomial SVM results with 99.5% accuracy, and RBF SVMs results with 99.99% accuracy.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJKBO.291689 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jkbo00:v:12:y:2022:i:1:p:1-27
Access Statistics for this article
International Journal of Knowledge-Based Organizations (IJKBO) is currently edited by John Wang
More articles in International Journal of Knowledge-Based Organizations (IJKBO) from IGI Global
Bibliographic data for series maintained by Journal Editor ().