Enhancing Rating Prediction by Discovering and Incorporating Hidden User Associations and Behaviors
Ligaj Pradhan
Additional contact information
Ligaj Pradhan: University of Alabama at Birmingham, Birmingham, USA
International Journal of Multimedia Data Engineering and Management (IJMDEM), 2019, vol. 10, issue 1, 40-59
Abstract:
Collaborative filtering (CF)-based rating prediction would greatly benefit by incorporating additional user associations and behavioral similarity. This article focuses on infusing such additional side information in three common techniques used for building CF-based systems. First, multi-view clustering is used over neighborhood-based rating predictions. Secondly, additional user behavior knowledge discovered by mining user reviews are infused into non-negative matrix factorization (NMF) techniques. Finally, the article explores how to infuse such additional behavioral knowledge into a Deep Neural Network (DNN) based DF architecture. The article also explores using term frequency-inverse document frequency (TF-IDF) vectors as the input to DNN. Since TF-IDF does not directly capture the conceptual contents of the text or the behavioral aspects of the writer, the article also proposes a novel scheme called topic proportions-inverse entity frequency (TP-IEF) that uses topics discovered from reviews instead of words to better capture semantic associations between users and items.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 18/IJMDEM.2019010103 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jmdem0:v:10:y:2019:i:1:p:40-59
Access Statistics for this article
International Journal of Multimedia Data Engineering and Management (IJMDEM) is currently edited by Chengcui Zhang
More articles in International Journal of Multimedia Data Engineering and Management (IJMDEM) from IGI Global
Bibliographic data for series maintained by Journal Editor ().