Improving Gender Classification Using an Extended Set of Local Binary Patterns
Abbas Roayaei Ardakany,
Mircea Nicolescu and
Monica Nicolescu
Additional contact information
Abbas Roayaei Ardakany: University of Nevada-Reno, Reno, NV, USA
Mircea Nicolescu: University of Nevada-Reno, Reno, NV, USA
Monica Nicolescu: University of Nevada-Reno, Reno, NV, USA
International Journal of Multimedia Data Engineering and Management (IJMDEM), 2014, vol. 5, issue 3, 47-66
Abstract:
In this article, the authors designed and implemented an efficient gender recognition system with high classification accuracy. In this regard, they proposed a novel local binary descriptor capable of extracting more informative and discriminative local features for the purpose of gender classification. Traditional Local binary patterns include information about the relationship between a central pixel value and those of its neighboring pixels in a very compact manner. In the proposed method the authors incorporate into the descriptor more information from the neighborhood by using extra patterns. They have evaluated their approach on the standard FERET and CAS-PEAL databases and the experiments show that the proposed approach offers superior results compared to techniques using state-of-the-art descriptors such as LBP, LDP and HoG. The results demonstrate the effectiveness and robustness of the proposed system with 98.33% classification accuracy.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 18/ijmdem.2014070103 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jmdem0:v:5:y:2014:i:3:p:47-66
Access Statistics for this article
International Journal of Multimedia Data Engineering and Management (IJMDEM) is currently edited by Chengcui Zhang
More articles in International Journal of Multimedia Data Engineering and Management (IJMDEM) from IGI Global
Bibliographic data for series maintained by Journal Editor ().