Unsupervised Video Object Foreground Segmentation and Co-Localization by Combining Motion Boundaries and Actual Frame Edges
Chao Zhang and
Guoping Qiu
Additional contact information
Chao Zhang: University of Nottingham, Ningbo, China
Guoping Qiu: University of Nottingham, Nottingham, UK
International Journal of Multimedia Data Engineering and Management (IJMDEM), 2018, vol. 9, issue 4, 21-39
Abstract:
In this article the authors proposed a fast and fully unsupervised approach for a foreground object co-localization and segmentation of unconstrained videos. This article first computes both the actual edges and motion boundaries of the video frames, and then aligns them by the proposed HOG affinity map approach. Then, by filling the occlusions generated by the aligned edges, the paper obtained more precise masks about the foreground object. With an accumulation process, these masks could be derived as the motion-based likelihood, which is used as a unary term in the proposed graph model. Another unary term is called color-based likelihood, which is computed by the color distribution of foreground and background. Experiment results shows the method is fast and effective to detect and segment foreground objects.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 18/IJMDEM.2018100102 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jmdem0:v:9:y:2018:i:4:p:21-39
Access Statistics for this article
International Journal of Multimedia Data Engineering and Management (IJMDEM) is currently edited by Chengcui Zhang
More articles in International Journal of Multimedia Data Engineering and Management (IJMDEM) from IGI Global
Bibliographic data for series maintained by Journal Editor ().