Portfolio Selection Models and Their Discrimination
Satadal Ghosh and
Sujit Kumar Majumdar
Additional contact information
Satadal Ghosh: Indian Institute of Science, India
Sujit Kumar Majumdar: Indian Statistical Institute, India
International Journal of Operations Research and Information Systems (IJORIS), 2011, vol. 2, issue 2, 65-91
Abstract:
The stochastic nature of financial markets is a barrier for successful portfolio management. Besides traditional Markowitz’s model, many other portfolio selection models in Bayesian and Non-Bayesian frameworks have been developed. Starting with the basic Markowitz model, several cardinal models are used to find optimum portfolios with select stock set. Having developed the regression model of the return of each stock with the market return, the unsystematic part of the uncertainty was used to find the optimum portfolio and efficient risk–return frontier within each portfolio selection model. The average stock return as estimated from its historical data and the forecasted stock return were used for maximizing return with quadratic programming formulation in Markowitz model. In the models involving Fuzzy probability and possibility distributions, the future return was estimated using the similarity grade of past returns. In the interval coefficient models, future return was estimated as interval variable. The optimum portfolios of different models were widely divergent and DEA was used to identify the model giving the best portfolio with higher appraisal, both overall and by peers, and least Maverick behavior. Use of Signal to Noise ratio proved equally efficient for model discrimination and yielded identical results.
Date: 2011
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/joris.2011040104 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:joris0:v:2:y:2011:i:2:p:65-91
Access Statistics for this article
International Journal of Operations Research and Information Systems (IJORIS) is currently edited by John Wang
More articles in International Journal of Operations Research and Information Systems (IJORIS) from IGI Global
Bibliographic data for series maintained by Journal Editor ().