EconPapers    
Economics at your fingertips  
 

A Survey and Comparison of Optimization Methods for Solving Multi-Stage Stochastic Programs with Recourse

Enzo Sauma
Additional contact information
Enzo Sauma: Department of Industrial and Systems Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile

International Journal of Operations Research and Information Systems (IJORIS), 2013, vol. 4, issue 2, 22-35

Abstract: In the last decade, multi-stage stochastic programs with recourse have been broadly used to model real-world applications. This paper reviews the main optimization methods that are used to solve multi-stage stochastic programs with recourse. In particular, this paper reviews four types of optimization approaches to solve multi-stage stochastic programs with recourse: direct methods, decomposition methods, Lagrangian methods and empirical-distribution methods. All these methods require some form of approximation, since multi-stage stochastic programs involve the evaluation of random functions and their expectations. The authors also provides a classification of the considered optimization methods. While decomposition optimization methods are recommendable for large linear problems, Lagrangian optimization methods are appropriate for highly nonlinear problems. When the problem is both highly nonlinear and very large, an empirical-distribution method may be the best alternative.

Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/joris.2013040102 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:joris0:v:4:y:2013:i:2:p:22-35

Access Statistics for this article

International Journal of Operations Research and Information Systems (IJORIS) is currently edited by John Wang

More articles in International Journal of Operations Research and Information Systems (IJORIS) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:joris0:v:4:y:2013:i:2:p:22-35