EconPapers    
Economics at your fingertips  
 

Intelligent Chair Sensor: Classification and Correction of Sitting Posture

Leonardo Martins, Rui Lucena, Rui Almeida, João Belo, Cláudia Quaresma, Adelaide Jesus and Pedro Vieira
Additional contact information
Leonardo Martins: Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
Rui Lucena: Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
Rui Almeida: Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
João Belo: Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
Cláudia Quaresma: Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal & Departamento de Saúde, Instituto Politécnico de Beja, Beja, Portugal
Adelaide Jesus: Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
Pedro Vieira: Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

International Journal of System Dynamics Applications (IJSDA), 2014, vol. 3, issue 2, 65-80

Abstract: In order to develop an intelligent system capable of posture classification and correction the authors developed a chair prototype equipped with air bladders in the chair's seat pad and backrest, which can in turn detect the user posture based on the pressure inside said bladders and change their conformation by inflation or deflation. Pressure maps for eleven standardized postures were gathered in order to automatically detect the user's posture, with resource to neural networks classifiers. First the authors tried to find the best parameters for the neural network classification of our data, obtaining an overall classification of around 80% for eleven standardized postures. Those neural networks were then exported to a mobile application to achieve a real-time classification of the standardized postures. Results showed a real-time classification of 93.4% for eight standardized postures, even for users that experimented for the first-time our intelligent chair. Using the same mobile application they devised and implemented two correction algorithms, acting due to conformation change of the bladders in the chair's seat when a poor seating posture is detected for certain periods of time.

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/ijsda.2014040105 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jsda00:v:3:y:2014:i:2:p:65-80

Access Statistics for this article

International Journal of System Dynamics Applications (IJSDA) is currently edited by Ahmad Taher Azar

More articles in International Journal of System Dynamics Applications (IJSDA) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jsda00:v:3:y:2014:i:2:p:65-80