A New Intra Fine-Tuning Method Between Histopathological Datasets in Deep Learning
Nassima Dif and
Zakaria Elberrichi
Additional contact information
Nassima Dif: EEDIS Laboratory, Djillali Liabes University, Sidi Bel Abbes, Algeria
Zakaria Elberrichi: EEDIS Laboraory, Djillali Liabes University, Sidi Bel Abbes, Algeria
International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), 2020, vol. 11, issue 2, 16-40
Abstract:
This article presents a new fine-tuning framework for histopathological images analysis. Despite the most common solutions where the ImageNet models are reused for image classification, this research sets out to perform an intra-domain fine tuning between the trained models on the histopathological images. The purpose is to take advantage of the hypothesis on the efficiency of transfer learning between non-distant datasets and to examine for the first time these suggestions on the histopathological images. The Inception-v3 convolutional neural network architecture, six histopathological source datasets, and four target sets as base modules were used in this article. The obtained results reveal the importance of the pre-trained histopathological models compared to the ImageNet model. In particular, the ICIAR 2018-A presented a high-quality source model for the various target tasks due to its capacity in generalization. Finally, the comparative study with the other literature results shows that the proposed method achieved the best results on both CRC (95.28%) and KIMIA-PATH (98.18%) datasets.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 8/IJSSMET.2020040102 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jssmet:v:11:y:2020:i:2:p:16-40
Access Statistics for this article
International Journal of Service Science, Management, Engineering, and Technology (IJSSMET) is currently edited by Ahmad Taher Azar
More articles in International Journal of Service Science, Management, Engineering, and Technology (IJSSMET) from IGI Global
Bibliographic data for series maintained by Journal Editor ().