A Survey on Blood Image Diseases Detection Using Deep Learning
Mohamed Loey,
Mukdad Rasheed Naman and
Hala Helmy Zayed
Additional contact information
Mohamed Loey: Benha University, Egypt
Mukdad Rasheed Naman: Benha University, Egypt
Hala Helmy Zayed: Benha University, Egypt
International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), 2020, vol. 11, issue 3, 18-32
Abstract:
Blood disease detection and diagnosis using blood cells images is an interesting and active research area in both the computer and medical fields. There are many techniques developed to examine blood samples to detect leukemia disease, these techniques are the traditional techniques and the deep learning (DL) technique. This article presents a survey on the different traditional techniques and DL approaches that have been employed in blood disease diagnosis based on blood cells images and to compare between the two approaches in quality of assessment, accuracy, cost and speed. This article covers 19 studies, 11 of these studies were in traditional techniques which used image processing and machine learning (ML) algorithms such as K-means, K-nearest neighbor (KNN), Naïve Bayes, Support Vector Machine (SVM), and 8 studies in advanced techniques which used DL, particularly Convolutional Neural Networks (CNNs) which is the most widely used in the field of blood image diseases detection since it is highly accurate, fast, and has the least cost. In addition, it analyzes a number of recent works that have been introduced in the field including the size of the dataset, the used methodologies, the obtained results, etc. Finally, based on the conducted study, it can be concluded that the proposed system CNN was achieving huge successes in the field whether regarding features extraction or classification task, time, accuracy, and had a lower cost in the detection of leukemia diseases.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 8/IJSSMET.2020070102 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jssmet:v:11:y:2020:i:3:p:18-32
Access Statistics for this article
International Journal of Service Science, Management, Engineering, and Technology (IJSSMET) is currently edited by Ahmad Taher Azar
More articles in International Journal of Service Science, Management, Engineering, and Technology (IJSSMET) from IGI Global
Bibliographic data for series maintained by Journal Editor ().