EconPapers    
Economics at your fingertips  
 

Self-Organizing Map Convergence

Robert Tatoian and Lutz Hamel
Additional contact information
Robert Tatoian: Department of Computer Science and Statistics, University of Rhode Island, Kingston, USA
Lutz Hamel: Department of Computer Science and Statistics, University of Rhode Island, Kingston, USA

International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), 2018, vol. 9, issue 2, 61-84

Abstract: Self-organizing maps are artificial neural networks designed for unsupervised machine learning. Here in this article, the authors introduce a new quality measure called the convergence index. The convergence index is a linear combination of map embedding accuracy and estimated topographic accuracy and since it reports a single statistically meaningful number it is perhaps more intuitive to use than other quality measures. The convergence index in the context of clustering problems was proposed by Ultsch as part of his fundamental clustering problem suite as well as real world datasets. First demonstrated is that the convergence index captures the notion that a SOM has learned the multivariate distribution of a training data set by looking at the convergence of the marginals. The convergence index is then used to study the convergence of SOMs with respect to the different parameters that govern self-organizing map learning. One result is that the constant neighborhood function produces better self-organizing map models than the popular Gaussian neighborhood function.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 8/IJSSMET.2018040103 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jssmet:v:9:y:2018:i:2:p:61-84

Access Statistics for this article

International Journal of Service Science, Management, Engineering, and Technology (IJSSMET) is currently edited by Ahmad Taher Azar

More articles in International Journal of Service Science, Management, Engineering, and Technology (IJSSMET) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jssmet:v:9:y:2018:i:2:p:61-84