EconPapers    
Economics at your fingertips  
 

Information Entropy Augmented High Density Crowd Counting Network

Yu Hao, Lingzhe Wang, Ying Liu and Jiulun Fan
Additional contact information
Yu Hao: Xi'an University of Posts and Telecommunications, China
Lingzhe Wang: Xi'an University of Posts and Telecommunications, China
Ying Liu: Xi'an University of Posts and Telecommunications, China
Jiulun Fan: Xi'an University of Posts and Telecommunications, China

International Journal on Semantic Web and Information Systems (IJSWIS), 2022, vol. 18, issue 1, 1-15

Abstract: The research proposes an innovated structure of the density map-based crowd counting network augmented by information entropy. The network comprises of a front-end network to extract features and a back-end network to generate density maps. In order to validate the assumption that the entropy can boost the accuracy of density map generation, a multi-scale entropy map extraction process is imported into the front-end network along with a fine-tuned convolutional feature extraction process, In the back-end network, extracted features are decoded into the density map with a multi-column dilated convolution network. Finally, the decoded density map can be mapped as the estimated counting number. Experimental results indicate that the devised network is capable of accurately estimating the count in extremely high crowd density. Compared to similar structured networks which don’t adapt entropy feature, the proposed network exhibits higher performance. This result proves the feature of information entropy is capable of enhancing the efficiency of density map-based crowd counting approaches.

Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSWIS.297144 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jswis0:v:18:y:2022:i:1:p:1-15

Access Statistics for this article

International Journal on Semantic Web and Information Systems (IJSWIS) is currently edited by Brij Gupta

More articles in International Journal on Semantic Web and Information Systems (IJSWIS) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jswis0:v:18:y:2022:i:1:p:1-15