Elementary: Large-Scale Knowledge-Base Construction via Machine Learning and Statistical Inference
Feng Niu,
Ce Zhang,
Christopher Ré and
Jude Shavlik
Additional contact information
Feng Niu: Computer Sciences Department, University of Wisconsin-Madison, USA
Ce Zhang: Computer Sciences Department, University of Wisconsin-Madison, USA
Christopher Ré: Computer Sciences Department, University of Wisconsin-Madison, USA
Jude Shavlik: Computer Sciences Department, University of Wisconsin-Madison, USA
International Journal on Semantic Web and Information Systems (IJSWIS), 2012, vol. 8, issue 3, 42-73
Abstract:
Researchers have approached knowledge-base construction (KBC) with a wide range of data resources and techniques. The authors present Elementary, a prototype KBC system that is able to combine diverse resources and different KBC techniques via machine learning and statistical inference to construct knowledge bases. Using Elementary, they have implemented a solution to the TAC-KBP challenge with quality comparable to the state of the art, as well as an end-to-end online demonstration that automatically and continuously enriches Wikipedia with structured data by reading millions of webpages on a daily basis. The authors describe several challenges and their solutions in designing, implementing, and deploying Elementary. In particular, the authors first describe the conceptual framework and architecture of Elementary to integrate different data resources and KBC techniques in a principled manner. They then discuss how they address scalability challenges to enable Web-scale deployment. The authors empirically show that this decomposition-based inference approach achieves higher performance than prior inference approaches. To validate the effectiveness of Elementary’s approach to KBC, they experimentally show that its ability to incorporate diverse signals has positive impacts on KBC quality.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/jswis.2012070103 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jswis0:v:8:y:2012:i:3:p:42-73
Access Statistics for this article
International Journal on Semantic Web and Information Systems (IJSWIS) is currently edited by Brij Gupta
More articles in International Journal on Semantic Web and Information Systems (IJSWIS) from IGI Global
Bibliographic data for series maintained by Journal Editor ().