EconPapers    
Economics at your fingertips  
 

Parameter Tuning for S-ABCPK: An Improved Service Composition Algorithm Considering Priori Knowledge

Ruilin Liu, Zhongjie Wang and Xiaofei Xu
Additional contact information
Ruilin Liu: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
Zhongjie Wang: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
Xiaofei Xu: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China

International Journal of Web Services Research (IJWSR), 2019, vol. 16, issue 2, 88-109

Abstract: QoS-aware service composition problem has been drawn great attention in recent years. As an NP-hard problem, high time complexity is inevitable if global optimization algorithms (such as integer programming) are adopted. Researchers applied various evolutionary algorithms to decrease the time complexity by looking for a near-optimum solution. However, each evolutionary algorithm has two or more parameters, the values of which are to be assigned by algorithm designers and likely have impacts on the optimization results (primarily time complexity and optimality). The authors' experiments show that there are some dependencies between the features of a service composition problem, the values of an evolutionary algorithm's parameters, and the optimization results. In this article, the authors propose an improved algorithm called Service-Oriented Artificial Bee Colony algorithm considering Priori Knowledge (S-ABCPK) to solve service composition problem and focus on the S-ABCPK's parameter turning issue. The objective is to identify the potential dependency for designers of a service composition algorithm easily setting up the values of S-ABCPK parameters to obtain a preferable composition solution without many times of tedious attempts. Eight features of the service composition problem and the priori knowledge, five S-ABCPK parameters and two metrics of the final solution are identified. Based on a large volume of experiment data, S-ABCPK parameter tuning for a given service composition problem is conducted using C4.5 algorithm and the dependency between problem features and S-ABCPK parameters are established using the neural network method. An experiment on a validation dataset shows the feasibility of the approach.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJWSR.2019040105 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jwsr00:v:16:y:2019:i:2:p:88-109

Access Statistics for this article

International Journal of Web Services Research (IJWSR) is currently edited by Liang-Jie Zhang

More articles in International Journal of Web Services Research (IJWSR) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jwsr00:v:16:y:2019:i:2:p:88-109