Quantification, Optimization and Uncertainty Modeling in Information Security Risks: A Matrix-Based Approach
Sanjay Goel and
Eitel J.M. Lauría
Additional contact information
Sanjay Goel: University at Albany, SUNY, USA
Eitel J.M. Lauría: Marist College, USA
Information Resources Management Journal (IRMJ), 2010, vol. 23, issue 2, 33-52
Abstract:
In this paper, the authors present a quantitative model for estimating security risk exposure for a firm. The model includes a formulation for the optimization of controls as well as determining sensitivity of the exposure of assets to different threats. The model uses a series of matrices to organize the data as groups of assets, vulnerabilities, threats, and controls. The matrices are then linked such that data is aggregated in each matrix and cascaded across the other matrices. The computations are reversible and transparent allowing analysts to answer what-if questions on the data. The exposure formulation is based on the Annualized Loss Expectancy (ALE) model, and uncertainties in the data are captured via Monte Carlo simulation. A mock case study based on a government agency is used to illustrate this methodology.
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 4018/irmj.2010040103 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:rmj000:v:23:y:2010:i:2:p:33-52
Access Statistics for this article
Information Resources Management Journal (IRMJ) is currently edited by George Kelley
More articles in Information Resources Management Journal (IRMJ) from IGI Global
Bibliographic data for series maintained by Journal Editor ().