New Algorithms for Maximum Weight Matching and a Decomposition Theorem
Chien-Chung Huang () and
Telikepalli Kavitha ()
Additional contact information
Chien-Chung Huang: Chalmers University of Technology
Telikepalli Kavitha: Tata Institute of Fundamental Research, India
Mathematics of Operations Research, 2017, vol. 42, issue 2, 411-426
Abstract:
We revisit the classical maximum weight matching problem in general graphs with nonnegative integral edge weights. We present an algorithm that operates by decomposing the problem into W unweighted versions of the problem, where W is the largest edge weight. Our algorithm has running time as good as the current fastest algorithms for the maximum weight matching problem when W is small. One of the highlights of our algorithm is that it also produces an integral optimal dual solution; thus our algorithm also returns an integral certificate corresponding to the maximum weight matching that was computed. Our algorithm yields a new proof to the total dual integrality of Edmonds’ matching polytope and it also gives rise to a decomposition theorem for the maximum weight of a matching in terms of the maximum size of a matching in certain subgraphs. We also consider the maximum weight capacitated b -matching problem in bipartite graphs with nonnegative integral edge weights and show that it can also be decomposed into W unweighted versions of the problem, where W is the largest edge weight. Our second algorithm is competitive with known algorithms when W is small.
Keywords: maximum weight matching; exact algorithms; total dual integrality (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1287/moor.2016.0806 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ormoor:v:42:y:2017:i:2:p:411-426
Access Statistics for this article
More articles in Mathematics of Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().